Penerapan Metode Non-Negative Matrix Factorization dan Generic Relevance of Sentence Pada Computer Based Test Essay
Abstract
Keywords
Full Text:
PDFReferences
N. K. Batcha, “Mining Frequent Patterns using Non-negative Matrix Factorization,” no. 1, pp. 1–4, 1999.
A. Ridok, “PERINGKASAN DOKUMEN BAHASA INDONESIA BERBASIS NON-NEGATIVE MATRIX FACTORIZATION ( NMF ),” vol. 1, no. 1, pp. 39–44, 2014.
P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” vol. 5, pp. 1457–1469, 2004.
“ORTHOGONALITY-REGULARIZED MASKED NMF FOR LEARNING ON WEAKLY LABELED AUDIO DATA Iwona Sobieraj, Lucas Rencker , Mark D . Plumbley University of Surrey Centre for Vision Speech and Signal Processing Guildford , Surrey GU2 7XH , United Kingdom,” pp. 2436–2440, 2018.
D. Metode and F. Matriks, “Implementasi peringkasan otomatis pada dokumen terstruktur dengan metode faktorisasi matriks nonnegatif,” no. November, 2017.
Y. Gong and X. Liu, “Generic text summarization using relevance measure and latent semantic analysis,” Proc. 24th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. - SIGIR ’01, pp. 19–25, 2001.
H. Maharani and M. Sanjaya, “Peringkasan Dokumen dengan Metode Non-Negative Matrix Factorization,” vol. 8, no. 2, 1858.
G. Al-Talib and H. Hassan, “A Study on Analysis of SMS Classification Using TF-IDF Weighting,” Int. J. Comput. Networks Commun. Secur., vol. 1, no. 5, pp. 189–194, 2013.
A. Mishra and S. Vishwakarma, “Analysis of TF-IDF Model and its Variant for Document Retrieval,” pp. 772–776, 2015.
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.