Analisis Tren dan Prediksi Konsumsi Energi Terbarukan Rumah Tangga Menggunakan Metode XGBoost
Abstract
Full Text:
PDFReferences
Al Samara, M., Bennis, I., Abouaissa, A., & Lorenz, P. (2022). A Survey of Outlier Detection Techniques in IoT: Review and Classification. Journal of Sensor and Actuator Networks, 11(1). https://doi.org/10.3390/jsan11010004
Brandon, P. S., Lombardi, P. L., & Bentivegna, V. (2003). Evaluation of the built environment for sustainability. In Evaluation of the Built Environment for Sustainability. https://doi.org/10.4324/9780203362426
Hasibuan, E., Informasi, S., Ilmu, F., Informasi, T., Gunadarma, U., Margonda, J., No, R., Cina, P., & Jawa, D. (2022). Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web. Jurnal Ilmiah Komputasi, 21(4), 595–602. https://doi.org/10.32409/jikstik.21.4.3327
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Izonin, I., Tkachenko, R., Shakhovska, N., Ilchyshyn, B., & Singh, K. K. (2022). A Two-Step Data Normalization Approach for Improving Classification Accuracy in the Medical Diagnosis Domain. Mathematics, 10(11), 1–18. https://doi.org/10.3390/math10111942
Kumar, M., & Bhardwaj, V. (2025). Evaluating Label Encoding and Preprocessing Techniques for Breast Cancer Prediction Using Machine Learning Algorithms. In International Journal of Computational Intelligence Systems (Vol. 18, Issue 1). Springer Netherlands. https://doi.org/10.1007/s44196-025-00957-7
Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032342
Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random Forest Algorithm Overview. Babylonian Journal of Machine Learning, 2024, 69–79. https://doi.org/10.58496/bjml/2024/007
Salsabil, M., Lutvi, N., & Eviyanti, A. (2024). Implementasi Data Mining Dalam Melakukan Prediksi Penyakit Diabetes Menggunakan Metode Random Forest Dan Xgboost. Jurnal Ilmiah Komputasi, 23(1), 51–58. https://doi.org/10.32409/jikstik.23.1.3507
Abubakar, I. R., Alola, A. A., Bekun, F. V., & Onifade, S. T. (2024). Investigating the determinants of household energy consumption in Nigeria: insights and implications. Energy Sustainability and Society, 14(1). https://doi.org/10.1186/s13705-024-00451-6
Powroźnik, P., & Szcześniak, P. (2024). Predictive Analytics for energy efficiency: Leveraging machine learning to optimize household energy consumption. Energies, 17(23), 5866. https://doi.org/10.3390/en17235866
Li, W., Zhu, J., Li, Y., Li, Y., & Ding, Z. (2024). Determinants of Solar Photovoltaic Adoption Intention among Households: A Meta-Analysis. Sustainability, 16(18), 8204. https://doi.org/10.3390/su16188204
Atalan, Y. A., Şahin, H., Keskin, A., & Atalan, A. (2025). Strategic forecasting of renewable energy production for sustainable electricity supply: A machine learning approach considering environmental, economic, and oil factors in Türkiye. PLoS ONE, 20(8), e0328290. https://doi.org/10.1371/journal.pone.0328290
Chaaban, A. K., & Alfadl, N. (2024). A comparative study of machine learning approaches for an accurate predictive modeling of solar energy generation. Energy Reports, 12, 1293–1302. https://doi.org/10.1016/j.egyr.2024.07.010
Nguyen, Q. H., Ly, H., Ho, L. S., Al-Ansari, N., Van Le, H., Tran, V. Q., Prakash, I., & Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/4832864
Popoola, P. A., Tapamo, J., & Assounga, A. G. H. (2024). Effective and efficient handling of missing data in supervised machine learning. Data Science and Management. https://doi.org/10.1016/j.dsm.2024.12.002
Refbacks
- There are currently no refbacks.
Published by:
Fakultas Teknik
Universitas Mulawarman
Jalan Sambaliung No. 9 Sempaja Selatan
Kec. Sempaja, Kota Samarinda, Kalimantan Timur
Kode Post. 75117
