Kajian Efisiensi Fermentasi Bioetanol Ubi Jalar (Ipomoea batatas L.) dalam Upaya Mendukung Arsitektur Berkelanjutan

Reza Prakoso Dwi Julianto, Edyson Indawan, Sri Umi Lestari, Putri Nopianti, Pramono Sasongko

Abstract


Penggunaan bahan bakar fosil saat ini menjadi sebuah permasalahan global. Perlu adanya alternatif energi terbarukan yang lebih ramah terhadap lingkungan serta berkelanjutan. Bioetanol adalah bahan bakar yang dihasilkan melalui proses fermentasi biomasssa yang tinggi akan kandungan pati dan selulosa. Tantangan dalam produksi bioethanol tidak hanya terletak pada aspek teknis, tetapi juga dalam aspek adanya integrasi dengan pembangunan berkelanjutan. Penelitian ini bertujuan menganalisis hubungan kandungan pati, gula total, dan pH terhadap kadar alkohol hasil fermentasi bioetanol dari delapan klon ubi jalar (Ipomoea batatas L.) dengan variasi konsentrasi ragi tape 5%, 10%, dan 15%. Berdasarkan penelitian ini diperoleh kesimpulan bahwa ubi jalar (Ipomoea batatas L.) mempunyai potensi untuk dikembangkan sebagai bahan baku pembuatan bioetanol dengan menggunakan ragi tape dalam proses fermentasi. Analisis kadar pati, kadar gula total, serta kadar alkohol yang terkonversi dari 8 klon yang di uji dengan umur panen yang berbeda beda menunjukkan hasil yang bervariasi. Klon Kuningan Putih (80 HST) dan Sari (150 HST) berpotensi untuk dijadikan sebagai bahan baku pembuatan bioetanol, hal ini terlihat dari produksi alkohol tertinggi dibandingkan klon yang lain. Selain itu klon Kuningan putih mempunyai keunggulan nilai kadar pati terkonversi pati tertinggi (22,53%) di bandingkan klon yang lain serta mempunyai umur panen yang pendek (80 HST). Analisis korelasi menunjukkan bahwa kadar pati mempunyai hubungan positif dengan kriteria kuat terhadap produksi kadar alkohol (r = 0,58), sedangkan kadar gula total terhadap produksi kadar alkohol mempunyai hubungan positif dengan kriteria cukup (r = 0,34).


Full Text:

PDF

References


Abdel Hay bin Omera, A. (2024). The use of green building materials in enhancing sustainable architecture. International Journal of Advanced Research on Planning and Sustainable Development, 6(1), 51–70. https://doi.org/10.21608/ijarpsd.2024.274890.1005

Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol Production from Renewable Raw Materials and its Separation and Purification: a Review. Food Technology and Biotechnology, 56(3). https://doi.org/10.17113/ftb.56.03.18.5546

Dhruv Sai Reddy, L. (2023). Study on Sustainable Architecture. International Journal of Science and Research (IJSR), 12(1), 469–471. https://doi.org/10.21275/SR23110215520

Fawaid, M. T., Al-Baarri, A. N., & Legowo, A. M. (2012). Substitusi ekstrak ampas tebu terhadap laju keasaman dan produksi alkohol pada proses pembuatan bioethanol berbahan dasar whey. Animal Agriculture Journal, 1(2), 362–366.

Gustina, M., Jalaluddin, J., ZA, N., Bahri, S., & . M. (2022). PENGARUH LAMA WAKTU FERMENTASI TERHADAP KADAR BIOETANOL DARI PATI UBI JALAR UNGU (Ipomea batata L). Chemical Engineering Journal Storage (CEJS), 2(2), 116–125. https://doi.org/10.29103/cejs.v2i2.6604

Hartina, F., Jannah, A., & Maunatin, A. (2014). FERMENTASI TETES TEBU DARI PABRIK GULA PAGOTAN MADIUN MENGGUNAKAN Saccharomyces cerevisiae UNTUK MENGHASILKAN BIOETANOL DENGAN VARIASI pH DAN LAMA FERMENTASI. ALCHEMY. https://doi.org/10.18860/al.v0i0.2907

Huang, H. (2005). Variation in Root Starch Gelatinization Characteristics During the Growth and Development of Sweetpotato. https://en.cnki.com.cn/Article_en/CJFDTotal-ZNYK200503005.htm

Indawan, E., Lestari, S. U., & Thiasari, N. (2018). Sweet potato response to biochar application on sub-optimal dry land. Journal of Degraded and Mining Lands Management, 5(2), 1133–1139. https://doi.org/10.15243/jdmlm.2018.052.1133

Jena, N., & Kar, M. K. (2019). Ethanol production from various plant sources using Saccharomyces cerevisiae. International Journal of Chemical Studies, 7(6), 2968–2971. https://www.chemijournal.com/archives/?year=2019&vol=7&issue=6&ArticleId=8198

Julianto, R. P. D., Lestari, S. U., & Indawan, E. (2021). ANALISIS KORELASI DAN JALUR DALAM PENENTUAN KRITERIA SELEKSI UBI JALAR (Ipomoea batatas (L.) Lam.) BERDAYA HASIL TINGGI. Jurnal Ilmu-Ilmu Pertanian Indonesia, 23(1), 53–60. https://doi.org/10.31186/jipi.23.1.53-60

Jusuf, M., & Ginting, E. (2014). The Prospects and Challenges of Sweet Potato as Bio-ethanol Source in Indonesia. Energy Procedia, 47, 173–179. https://doi.org/https://doi.org/10.1016/j.egypro.2014.01.211

Karanjikar, P. N., Patange, M. J., Godavari, Belagalla, N., Negi, V., KS, S., & Bisht, P. (2024). Integration of Renewable Energy Solutions in Agricultural Operations. Journal of Geography, Environment and Earth Science International, 28(11), 23–34. https://doi.org/10.9734/jgeesi/2024/v28i11835

Khaidir, K., Ismadi, I., & Zulfikar, Z. (2016). Proses Produksi Bioetanol dari Ubi Jalar Merah (Ipomoea batatas) Menggunakan Ragi Tape. https://repository.unimal.ac.id/2021/

Kim, S. M., Khullar, E., Liu, W., Lanahan, M., Lessard, P., Dohle, S., Emery, J., Raab, R. M. , & Singh, V. (2015). Rice Straw with Altered Carbohydrate Content: Feedstock for Ethanol Production. Transactions of the ASABE, 523–528. https://doi.org/10.13031/trans.58.11021

Lask, J., Rukavina, S., Zorić, I., Kam, J., Kiesel, A., Lewandowski, I., & Wagner, M. (2021). Lignocellulosic ethanol production combined with CCS—A study of GHG reductions and potential environmental trade‐offs. GCB Bioenergy, 13(2), 336–347. https://doi.org/10.1111/gcbb.12781

Lestari, S. U., & Hapsari, R. I. (2015). DUAL-PURPOSE ASSESSMENT FOR SWEETPOTATO. AGRIVITA Journal of Agricultural Science, 37(2). https://doi.org/10.17503/Agrivita-2015-37-2-p123-129

Lily Surayya, E. P., Nasrulloh, N., & Abdul, H. (2011). Bioethanol Production from Sweet Potato Using Combination of Acid and Enzymatic Hydrolysis. Applied Mechanics and Materials, 110–116, 1767–1772. https://doi.org/10.4028/www.scientific.net/AMM.110-116.1767

Motsa, N. M., Modi, A. T., & Mabhaudhi, T. (2015). Sweet potato response to low-input agriculture and varying environments of KwaZulu-Natal, South Africa: implications for food security strategies. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65(4), 329–340. https://doi.org/10.1080/09064710.2015.1011222

Ojewumi, M. E., Akwayo, I. J., Taiwo, O. S., Obanla, O. M., Ayoola, A. A., Ojewumi, E. O., & Oyeniyi, E. A. (2018). Bio-Conversion of Sweet Potato Peel Waste to BioEthanol Using Saccharomyces Cerevisiae. http://eprints.covenantuniversity.edu.ng/11318/

Segovia-Hernández, J. G., Sanchez-Ramirez, E., Alcocer-Garcia, H., Romero-Garcia, A. G., & Quiroz-Ramirez, J. J. (2022). Bioethanol (pp. 25–50). https://doi.org/10.1007/978-3-031-13216-2_3

Swain, M. R., Mishra, J., & Thatoi, H. (2013). Bioethanol production from sweet potato (Ipomoea batatas L.) flour using co-culture of Trichoderma sp. and Saccharomyces cerevisiae in solid-state fermentation. Brazilian Archives of Biology and Technology, 56(2), 171–179. https://doi.org/10.1590/S1516-89132013000200002

Tian, S.-Q., Zhao, R.-Y., & Zhao, J.-L. (2018). Production of bioethanol from sweet potato tubers with different storage times. BioResources, 13(3), 4795–4806. https://doi.org/10.15376/biores.13.3.4795-4806

Wang, S.-J., Chen, M.-H., Yeh, K.-W., & Tsai, C.-Y. (2006). Changes in Carbohydrate Content and Gene Expression During Tuberous Root Development of Sweet Potato. Journal of Plant Biochemistry and Biotechnology, 15(1), 21–25. https://doi.org/10.1007/BF03321896

Wang, X., Tian, S., Lou, H., & Zhao, R. (2020). A reliable method for predicting bioethanol yield of different varieties of sweet potato by dry matter content. Grain & Oil Science and Technology, 3(3), 110–116. https://doi.org/10.1016/j.gaost.2020.06.002

Xiao, J., Shen, L., Zhang, Y., & Gu, J. (2009). Integrated Analysis of Energy, Economic, and Environmental Performance of Biomethanol from Rice Straw in China. Industrial & Engineering Chemistry Research, 48(22), 9999–10007. https://doi.org/10.1021/ie900680d

Xu, H., Lee, U., & Wang, M. (2022). Life‐cycle greenhouse gas emissions reduction potential for corn ethanol refining in the USA. Biofuels, Bioproducts and Biorefining, 16(3), 671–681. https://doi.org/10.1002/bbb.2348

Zhang, J., Jia, C., Wu, Y., Xia, X., Xi, B., Wang, L., & Zhai, Y. (2017). Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes. PLOS ONE, 12(7), e0180685. https://doi.org/10.1371/journal.pone.0180685


Refbacks

  • There are currently no refbacks.




Published by:

Fakultas Teknik

Universitas Mulawarman

Jalan Sambaliung No. 9 Sempaja Selatan

Kec. Sempaja, Kota Samarinda, Kalimantan Timur

Kode Post. 75117