Pengaruh pH terhadap Biosorpsi Timbal Pb(II) oleh Pseudomonas putida Terimobilisasi pada Matriks Kalsium Alginat
Abstract
ABSTRAK
Penelitian ini mengevaluasi pengaruh pH terhadap biosorpsi Pb(II) menggunakan Pseudomonas putida yang diimobilisasi dalam matriks kalsium alginat. Biosorben disiapkan dengan mencampurkan suspensi sel (±10⁸ CFU/mL) ke dalam larutan alginat steril dan meneteskan campuran ke larutan CaCl₂ 0,1 M untuk membentuk bead, diikuti pengeringan dan pengayakan. Uji batch dilakukan pada C₀=25 mg/L (100 mL), massa biosorben 0,15 g, pengadukan 60 menit pada suhu kamar, dan variasi pH 3–8 konsentrasi akhir diukur dengan AAS. Karakterisasi dilakukan menggunakan FTIR dan SEM-EDX sebelum dan sesudah adsorpsi. Hasil menunjukkan kapasitas meningkat dari pH 3–4 dan optimum pada pH sekitar 5, kemudian menurun/menetap pada pH lebih tinggi. FTIR mengindikasikan pergeseran/peluruhan pita –COO⁻ dan –OH/–NH yang konsisten dengan kompleksasi dan pertukaran ion pada matriks alginat/biomassa, sedangkan SEM memperlihatkan permukaan yang lebih kasar pasca-adsorpsi. Temuan ini menegaskan bahwa imobilisasi P. putida pada kalsium alginat efektif untuk penghilangan Pb(II), dengan pH sebagai variabel kunci untuk mengoptimalkan kinerja.
Kata kunci: Biosorpsi; Pseudomonas putida;Imobilisasi; pH; Pb(II).
ABSTRACT
This study examines the effect of pH on Pb(II) biosorption by calcium–alginate–immobilized Pseudomonas putida. The biosorbent was prepared by mixing a cell suspension (≈10⁸ CFU/mL) with sterile alginate and dripping the mixture into 0.1 M CaCl₂ to form beads, followed by drying and sieving. Batch tests used an initial Pb(II) concentration of 25 mg/L (100 mL), biosorbent mass of 0.15 g, 60 min contact at room temperature, and pH variation from 3 to 7; residual Pb(II) was quantified by AAS. FTIR and SEM-EDX characterizations were performed before and after adsorption. Results show increasing capacity from acidic conditions to a maximum at around pH 5, followed by a decrease/plateau at higher pH. FTIR reveals shifts/intensity changes of –COO⁻ and –OH/–NH bands indicative of complexation and ion-exchange within the alginate/biomass matrix, while SEM images show roughened, heterogeneous surfaces after adsorption.
These findings confirm that immobilized P. putida is effective for Pb(II) removal and that pH control is critical to optimize performance.
Keywords: Biosorption; Pseudomonas putida; Immobilization; pH; Pb(II).
Full Text:
PDFReferences
Bayuo, Jonas, Mwemezi J. Rwiza, Mika Sillanpää, and Kelvin Mark Mtei. 2023. “Removal of Heavy Metals from Binary and Multicomponent Adsorption Systems Using Various Adsorbents – a Systematic Review.” RSC Advances 13(19):13052–93. doi:10.1039/D3RA01660A.
Chen, Xinggang, Zhuang Tian, Haina Cheng, Gang Xu, and Hongbo Zhou. 2021. “Adsorption Process and Mechanism of Heavy Metal Ions by Different Components of Cells, Using Yeast (Pichia Pastoris) and Cu2+as Biosorption Models.” RSC Advances 11(28):17080–91. doi:10.1039/d0ra09744f.
El-Sharkawy, Reyad M., Mohamed Khairy, Mohamed H. H. Abbas, Magdi E. A. Zaki, and Abdalla E. El-Hadary. 2024. “Innovative Optimization for Enhancing Pb2+ Biosorption from Aqueous Solutions Using Bacillus Subtilis.” Frontiers in Microbiology 15. doi:10.3389/fmicb.2024.1384639.
Kassem, Amin, Lana Abbas, Oliver Coutinho, Somie Opara, Hawraa Najaf, Diana Kasperek, Keshav Pokhrel, Xiaohua Li, and Sonia Tiquia-Arashiro. 2023. “Applications of Fourier Transform-Infrared Spectroscopy in Microbial Cell Biology and Environmental Microbiology: Advances, Challenges, and Future Perspectives.” Frontiers in Microbiology 14. doi:10.3389/fmicb.2023.1304081.
Khashei, Sanaz, Zahra Etemadifar, and Hamid Reza Rahmani. 2018. “Immobilization of Pseudomonas Putida PT in Resistant Matrices to Environmental Stresses: A Strategy for Continuous Removal of Heavy Metals under Extreme Conditions.” Annals of Microbiology 68(12):931–42. doi:10.1007/s13213-018-1402-7.
Nastaj, Józef, Agata Przewłocka, and Monika Rajkowska-Myśliwiec. 2016. “Biosorption of Ni(II), Pb(II) and Zn(II) on Calcium Alginate Beads: Equilibrium, Kinetic and Mechanism Studies.” Polish Journal of Chemical Technology 18(3):81–87. doi:10.1515/pjct-2016-0052.
Papageorgiou, Sergios K., Evangelos P. Kouvelos, Evangelos P. Favvas, Andreas A. Sapalidis, George E. Romanos, and Fotios K. Katsaros. 2010. “Metal–Carboxylate Interactions in Metal–Alginate Complexes Studied with FTIR Spectroscopy.” Carbohydrate Research 345(4):469–73. doi:10.1016/j.carres.2009.12.010.
Pardo, Rafael, Mar Herguedas, Enrique Barrado, and Marisol Vega. 2003. “Biosorption of Cadmium, Copper, Lead and Zinc by Inactive Biomass of Pseudomonas Putida.” Analytical and Bioanalytical Chemistry 376(1):26–32. doi:10.1007/s00216-003-1843-z.
Setiawan, Adhi, Devi Ayu Rahmawati, Nora Amelia Novitrie, and Denny Dermawan. 2024. “Efektivitas Biosorpsi Logam Berat Ni(II) Menggunakan Saccharomyces Cerevisiae Terimobilisasi Pada Natrium Alginat.” METANA 20(2):69–78. doi:10.14710/metana.v20i2.59250.
Torres, Enrique. 2020. “Biosorption: A Review of the Latest Advances.” Processes 8(12):1–23.
Velkova, Zdravka, Gergana Kirova, Margarita Stoytcheva, Sonia Kostadinova, Kostadinka Todorova, and Velizar Gochev. 2018. “Immobilized Microbial Biosorbents for Heavy Metals Removal.” Engineering in Life Sciences 18(12):871–81.
Refbacks
- There are currently no refbacks.
Published by:
Fakultas Teknik
Universitas Mulawarman
Jalan Sambaliung No. 9 Sempaja Selatan
Kec. Sempaja, Kota Samarinda, Kalimantan Timur
Kode Post. 75117
