Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network
Abstract
Keywords
Full Text:
PDFReferences
Ahmad, S., & Latif, H. A. (2011). Forecasting on the Crude Palm Oil and Kernel Palm Production: Seasonal ARIMA Approach. 2011 IEEE Colloquium on Humanities, Science and Engineering Research (CHUSER 2011), Dec 5-6 2011, Penang, 939–944.
Asteriou, D., & Hall, S. G. (2011). ARIMA Models and the Box–Jenkins Methodology. Applied Econometrics (Second Ed.). Palgrave MacMillan.
Geurts, M., Box, G. E. P., & Jenkins, G. M. (2006). Time Series Analysis: Forecasting and Control. Journal of Marketing Research. https://doi.org/10.2307/3150485
Gunawan, R., Khodra, M. L., & Harlili. (2013). Commodity price prediction using neural network case study: Crude palm oil price. Proceeding - 2013 International Conference on Computer, Control, Informatics and Its Applications: “Recent Challenges in Computer, Control and Informatics”, IC3INA 2013. https://doi.org/10.1109/IC3INA.2013.6819181
Haviluddin, & Dengen, N. (2017). Comparison of SARIMA, NARX and BPNN models in forecasting time series data of network traffic. Proceeding - 2016 2nd International Conference on Science in Information Technology, ICSITech 2016: Information Science for Green Society and Environment. https://doi.org/10.1109/ICSITech.2016.7852645
Haviluddin, H., & Alfred, R. (2014). Daily Network Traffic Prediction Based on Backpropagation Neural Network. Australian Journal of Basic and Applied Science, 8(8(24) Special 2014), 164–169. Retrieved from http://www.ajbasweb.com/old/index.html
Haviluddin, H., Alfred, R., Obit, J. H., Hijazi, M. H. A., & Ibrahim, A. A. A. (2015). A Performance Comparison of Statistical and Machine Learning Techniques in Learning Time Series Data. Advanced Science Letters, Vol. 21(Number 10, October 2015), 3037–3041. https://doi.org/10.1166/asl.2015.6490
Haviluddin, H., & Jawahir, A. (2015). Comparing of ARIMA and RBFNN for short-term forecasting. International Journal of Advances on Intelligent Informatics, 1(1), 15–22. https://doi.org/10.1292/ijain.v1i1.10.g8
Kanchymalay, K., Sallehuddin, R., Salim, N., & Hashim, U. R. (2017). Time series based forecasting for crude palm oil price utilizing neural network algorithms. 6th ICT International Student Project Conference: Elevating Community Through ICT, ICT-ISPC 2017. https://doi.org/10.1109/ICT-ISPC.2017.8075334
Kementan. (2018). Kementan: Industri Kelapa Sawit Berkontribusi Besar Terhadap Ekonomi. KOMPAS.Com. Retrieved from https://ekonomi.kompas.com/read/2018/03/06/193500226/kementan--industri-kelapa-sawit-berkontribusi-besar-terhadap-ekonomi
Meryana, E. (2017). Minyak Kelapa Sawit Indonesia - Produksi & Ekspor CPO |
Indonesia Investments. Indonesia-Investments.
Mislan, Gaffar, A. F. O., Haviluddin, & Puspitasari, N. (2018). Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP). 1st International Conference on Tropical Studies and Its Application (ICTROPS).
Norhidayu, A., Nur-Syazwani, M., Radzil, R., Amin, I., & Balu, N. (2017). The production of crude palm oil in Malaysia. International Journal of Economics and Management, 11(3 Special Issue), 591–606.
Rojas, R., & Rojas, R. (2011). The Backpropagation Algorithm. In Neural Networks. https://doi.org/10.1007/978-3-642-61068-4_7
Statistik, B. P. (2018). Badan Pusat Statistik. Retrieved August 27, 2018, from https://bps.go.id/subject/6/tenaga-kerja.html#subjekViewTab3
Wan Ahmad, W. K. A., & Ahmad, S. (2013). Arima model and exponential smoothing method: A comparison. AIP Conference Proceedings. https://doi.org/10.1063/1.4801282
DOI: http://dx.doi.org/10.30872/jsakti.v1i1.2261
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Sains, Aplikasi, Komputasi dan Teknologi Informasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
2nd Floor, Faculty of Computer Science and Information Technology
Jl. Panajam Kampus Gn. Kelua Universitas Mulawarman Samarinda-Kalimantan Timur 75123
Phone: +62 813 31112002 (Haviluddin) +62 811 8207777 (Reza)
E-Mail: jurnal.sakti.fkti@gmail.com; sakti@unmul.ac.id
Sains, Aplikasi, Komputasi dan Teknologi Informasi by http://e-journals.unmul.ac.id/index.php/jsakti eISSN: 2684-8473 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.