Penerapan Algoritma K-Means Dalam Clustering Produk Terlaris Pada Fr Parfum

Heri Yansah, Tina Tri Wulansari, Faza Alameka

Abstract


In sales activities, it is important to know which products are selling the best. FR Parfum is a perfume shop that sells quite a lot of perfumes, but the owner does not know which perfumes are the best-selling in his shop. The purpose of this study is to assist shop owners in knowing what perfumes are the best selling at FR Parfum. In this study, the K-Means algorithm with the Clustering method was used, the data were grouped into 3 clusters which were categorized as very in demand, in demand, and less in demand. The data is processed in the RapidMiner application and the results obtained based on the cluster division are cluster 0 which has a size of 30 millimetres, cluster 1 has a size of 7 milli, 10 milli and 12 millimetres, cluster 2 has a size of 20 millimetres. The data used in this study is the sales data of FR Parfum in 2021 as many as 1,655 data in excel format. And the results obtained show that cluster 1 is the highest with a total of 884 of the total sales of 183 7 milliliters, 165 10 milliliters sold and 536 12 milliliters sold. Baccarat perfume was the best selling 88, April Rose perfume was the best-selling sold 58, and the Cuddle perfume was the under-selling one, selling 1. (HY)

Keywords


Data Mining; Parfum; Clustering; K-Means;

Full Text:

PDF

References


Andika, M. R. (2018). Pengelompokan Perilaku Mahasiswa Pada Perkuliahan E-Learning Dengan K-Means Clustering. Jurnal Kajian Ilmiah, 126-133.

Aprilla, D. (2013). Belajar Data Mining Dengan Rapidminer.

Faid, M. (2019). Perbandingan Kinerja Tool Data Mining Weka Dan Rapidminer Dalam Algoritma Klasifikasi. Teknika, 11-16.

Falih Pramataning Dewi, P. S. (2022). Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan Dalam Proses Pembelajaran. Jurnal Informatika Sunan Kalijaga, 111-121.

Foroughi, L. (2018). Knowledge Discovery In Database Metode Generalized Vector Space Model Pada Sistem Temu Kembali Informasi Terjemahan Kitab Mizanul Hikmah Berbahasa Indonesia.

Gullo. (2015). Knowledge Discovery In Database Metode Generalized Vector Space Model Pada Sistem Temu Kembali Informasi Terjemahan Kitab Mizanul Hikmah Berbahasa Indonesia.

Gustientiedina, M. A. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada Rsud Pekanbaru. Jurnal Nasional Teknologi Dan Sistem Informasi, 17-24.

Snati. (2012). Pengelompokan Data Penjualan Produk Pada Pt Advanta Seeds Indonesia Menggunakan Metode K - Means. Jurnal Mahasiswa Teknik Informatika, 34-40.

Suyanto. (2017). Penerapan Algoritma K-Means Untuk Memetakan Garis Kemiskinan Menurut Provinsi Di Indonesia.

Widodo. (2013). Pengelompokan Data Penjualan Produk Pada Pt Advanta Seeds Indonesia Menggunakan Metode K - Means. Jurnal Mahasiswa Teknik Informatika.




DOI: http://dx.doi.org/10.30872/jsakti.v4i2.9075

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sains, Aplikasi, Komputasi dan Teknologi Informasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

2nd Floor, Faculty of Computer Science and Information Technology
Jl. Panajam Kampus Gn. Kelua Universitas Mulawarman Samarinda-Kalimantan Timur 75123
Phone: +62 813 31112002 (Haviluddin) +62 811 8207777 (Reza)
E-Mail: jurnal.sakti.fkti@gmail.com; sakti@unmul.ac.id

Creative Commons License
Sains, Aplikasi, Komputasi dan Teknologi Informasi by http://e-journals.unmul.ac.id/index.php/jsakti eISSN: 2684-8473 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.