Smart Manufacturing Management System Memanfaatkan Big Data Dan Algoritma Machine Learning Untuk Produksi UMKM

Dwi Iskandar, Muh Alif Fathoni, Aldika Arta Bhrata

Abstract


Di era smart manufacturing menuntut perusahaan menerapkan teknologi big data dan artificial intelligence (kecerdasan buatan) untuk diterapkan di sistem manufaktur. Seiring berjalannya proses manufaktur maka data yang dihasilkan akan semakin besar maka diperluhkan analisis data agar data dapat dibaca sebagai statistik. Machine learning sebagai bagian dari artificial intelligence sangat diperluhkan untuk memberikan analisis, rekomendasi dan prediksi. Penerapan teknologi ini tidak hanya dibutuhkan untuk perusahaan besar namun juga perlu diterapkan di sektor UMKM termasuk di UMKM yang bergerak dibidang industri manufaktur. Penelitian ini menggunakan metode pengumpulan data sekunder. Tujuan dalam penelitian ini adalah merancang smart manufacturing management system menerapkan big data dengan platform mongoDB dan Machine Learning dengan pemrograman python. Library yang diperluhkan numpy, pandas, scikit-learn dan matplotlib. Algoritma yang digunakan algoritma Support Vector Machine (SVM). Deployment menggunakan framework Django.


Keywords


Manufaktur; Big data; Machine Learning

Full Text:

PDF

References


Alimuddin Yasin, MZ Yumarlin, T. F. (2017). Analisis Kebutuhan Sistem Informasi di LPK RJ-COMP Yogyakarta. Seminar Nasional Informatika (SNIf), 1(1), 111–116.

Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of manufacturing execution systems (MES). Journal of Innovation Management, 3, 16-21.

Alpaydin, E.(2020). Introduction to machine learning. MIT press

Anagnostopoulos, C., & Kolomvatsos, K. (2015). Editorial. International Journal of Machine Learning and Cybernetics, 6(6), 873–874. https://doi.org/10.1007/s13042-015-0429-3

CNN Indonesia. (2020). Pakar Ungkap Big Data dan AI Harus Mulai Dipakai UMKM RI. Www.Cnnindonesia.Com. https://www.cnnindonesia.com/teknologi/20201126201456-185-575093/pakar-ungkap-big-data-dan-ai-harus-mulai-dipakai-umkm-ri

Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031

Franciscus, N., Ren, X., & Stantic, B. (2018). Precomputing architecture for flexible and efficient big data analytics. Vietnam Journal of Computer Science, 5(2), 133–142. https://doi.org/10.1007/s40595-018-0109-9

Imam, A. A., Basri, S., Ahmad, R., Watada, J., & González-Aparicio, M. T. (2018). Automatic schema suggestion model for NoSQL document-stores databases. Journal of Big Data, 5(1), 1–17. https://doi.org/10.1186/s40537-018-0156-1

Ispriyanti, D., & Hoyyi, A. (2016). ANALISIS Klasifikasi Masa Studi Mahasiswa Prodi Statistika Undip Dengan Metode Support Vector Machine (SVM) Dan ID3 (Iterative Dichotomiser 3). Media Statistika, 9(1), 15–29. https://doi.org/10.14710/medstat.9.1.15-29

Kaňovská, L. (2020). Are smart service manufacturing providers different in cooperation and innovation flexibility , in innovation performance and business performance from nonsmart service manufacturing providers ?12(4), 105–116. https://doi.org/10.2478/emj2020-0031

Marsland, S.(2015). Machine learning: an algorithmic perspective. CRC press.

Pant, A. (2019). Workflow of a Machine Learning project. Towards Data Science. https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. “ O’Reilly Media, Inc.”

Salkuti, S. R. (2020). A survey of big data and machine learning. International Journal of Electrical and Computer Engineering, 10(1), 575–580. https://doi.org/10.11591/ijece.v10i1.pp575-580

Saputra1, D., & Aji, R. F. (2018). ANALISIS Perbandingan Performa Web Service Rest Menggunakan Framework Laravel, Django Dan Ruby On Rails Untuk Akses Data Dengan Aplikasi Mobile (Studi Kasus: Portal E-Kampus STT Indonesia Tanjungpinang). Jurnal Ilmiah Bangkit Indonesia, 2(Vii), 6. https://portal.issn.org/resource/ISSN/2337-4055#

Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A., & Verl, A. (2015). Making existing production systems Industry 4.0-ready. Production Engineering, Vol. 9, Issue.1, pp.143-148.

Singh, S. K., & Del Giudice, M. (2019). Big data analytics, dynamic capabilities and firm performance. Management Decision, 57(8), 1729–1733. https://doi.org/10.1108/MD-082019-020

Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 139(7), 1–9. https://doi.org/10.1115/1.4036350




DOI: http://dx.doi.org/10.30872/jim.v16i2.5258

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer

Editor Informatika Mulawarman Address:
ISSN 1858-4853 (Print) | ISSN 2597-4963 (Online)

Published by: Mulawarman University
Managed by : Informatika Department
Jalan Sambaliung No.9 Sempaja Selatan Samarinda Utara,
Kalimantan Timur 75117
 - Indonesia
E-mail: jim.unmul@gmail.com
OJS: http://e-journals.unmul.ac.id/index.php/JIM
Contact Person: Gubtha Mahendra Putra

 Creative Commons License

Informatika Mulawarman by http://e-journals.unmul.ac.id/index.php/JIM/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Under the CC BY-SA license, authors and other users are able to reprint, distribute or use the material for commercial purposes so long as they give attribution to the journal Informatika Mulawarman and license the republished material under the same license.