Deep Learning on EEG Study Concentration in Pendemic

Garnis Ajeng Pamiela, Ahmad Azhari

Abstract


Brainwaves are one of the biometric properties that can be used to identify individuals based on their physical and behavioural characteristics. An electroencephalogram (EEG) can be used to measure and capture brain wave activity. The activities required are in the form of giving complex tasks to get thinking and concentration processes called Cognitive Tests, in the form of a Culture Fair Intelligence Test (CFIT) stimulus and Competency Test (UK). This study aims to obtain a pattern of the relationship between concentration and learning outcomes for late adolescent students during the pandemic. The object of research involved in this research is the 10th grade students of TKJ SMK. Data acquisition was carried out twice on the Beta signal by doing cognitive test questions which were done twice at school and at home. Then the data obtained from the test results will be extracted using Fast Fourier Transform (FFT). Furthermore, after the data extraction results are obtained, the classification process will be carried out using the CNN algorithm. The results of the FFT obtained the average value of the signal peak. The results of the CNN classification show that the pandemic does not affect student concentration. The average signal concentration in schools when testing using CFIT is 0.2445 and at the time of testing using UK Mathematics is 0.1330 with an average CFIT score of 77.05 and for UK average is 53.33 with an accuracy value of 83.33 %. While the average signal concentration at home when testing using CFIT is 0.2252 and at the time of testing using UK Mathematics is 0.1301 with an average CFIT score of 77.13 and for UK average is 57.50 with an accuracy value of 83, 33%.


Keywords


Brainwaves; Electroencephalogram; Deep Learning; CNN; Fast Fourier Transform

Full Text:

PDF

References


Arthana, I. K. R., Dantes, G. R. and Dantes, N. (2018) ‘Optimalisasi pemanfaatan teknologi informasi dan komunikasi (tik) dalam bidang pendidikan melalui penerapan smart school’, Jurnal Widya Laksana, 7(1), pp. 81–91. Available at: https://ejournal.undiksha.ac.id/index.php/JPKM/issue/view/775.

Asmuni (2020) ‘Jurnal Paedagogy : Jurnal Paedagogy ’:, Jurnal Paedagogy: Jurnal Penelitian dan Pengembangan Pendidikan, 7(4), pp. 281–288.

Azhari, A. (2015) ‘Analisis Pengaruh Cognitive Task Berdasarkan Hasil Ekstraksi Ciri Gelombang Otak Menggunakan Jarak Euclidean’, Seminar Nasional Teknologi Informasi dan Multimedia 2017, pp. 3.1-1-3.1.6.

D. Millett, “Hans Berger: From Psychic Energy to the EEG,” Perspect. Biol. Med.,

Djamal, E. C. et al. (2020) ‘Identification of post-stroke eeg signal using wavelet and convolutional neural networks’, Bulletin of Electrical Engineering and Informatics, 9(5), pp. 1890–1898. doi: 10.11591/eei.v9i5.2005.

Djamal, E. C., Furi, W. I. and Nugraha, F. (2019) ‘Detection of EEG Signal Post-Stroke Using FFT and Convolutional Neural Network’, Proceeding of the Electrical Engineering Computer Science and Informatics, 6(1), pp. 18–23. doi: 10.11591/eecsi.v6.2013.

Fiqri, F. N. (2021) ‘Klasifikasi Aktivitas Otak pada Subjek Alkoholik dengan Elektroensefalografi ( EEG ) menggunakan Deep Learning’, (April).

Ghufron, M. N. and Risnawita, R. (2015) ‘Kesulitan Belajar Pada Anak : Identifikasi Faktor yang Berperan’, Journal Elementary, 03(02), p. 15. Available at: https://journal.iainkudus.ac.id/index.php/elementary/article/download/1455/1331.

Hanifah Salsabila, U. et al. (2020) ‘Peran Teknologi Dalam Pembelajaran Di Masa Pandemi Covid-19’, Al-Mutharahah: Jurnal Penelitian dan Kajian Sosial Keagamaan, 17(2), pp. 188–198. doi: 10.46781/al-mutharahah.v17i2.138.

Haryani, P. J. T. (2017) ‘Augmented Reality ( Ar ) Sebagai Teknologi Interaktif’, Jurnal SIMETRIS, 8(2), pp. 807–812.

Jayakar, P. et al. (2016) ‘Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques’, Epilepsia, 57(11), pp. 1735–1747. doi: 10.1111/epi.13515.

Nisa, F. A. and Khotimah, N. (2019) ‘Metode Guru dalam Meningkatkan Konsentrasi Anak yang Mengalami Gangguan Pemusatan Perhatian dan Hiperaktifitas (GPPH/ADHD) dalam Kegiatan Belajar’, Academica Journal of Multidisciplinary Studies, 3(2), pp. 235–248. Available at: http://ejournal.iainsurakarta.ac.id/index.php/academica/article/view/2008.

Nugraheni, S. A. (2016) ‘Menguak Belantara Autisme’, Buletin Psikologi, 20(1–2), pp. 9–17. doi: 10.22146/bpsi.11944.

Nugroho, K. et al. (2021) ‘Pemanfaatan Teknologi Droplet Digital PCR (ddPCR) dalam Kegiatan Analisis Molekuler Tanaman’, Jurnal Bios Logos, 11(1), p. 28. doi: 10.35799/jbl.11.1.2021.31101.

Nuryana, A. (2010) ‘Efektivitas brain gym dalam meningkatkan konsentrasi belajar pada anak’, Ilmiah Berkala Psikologi, VOl.12 No., pp. 88–98.

Pangistu, L. A. M. and Azhari, A. (2021) ‘Deep Learning on Game Addiction Detection Based on Electroencephalogram’, Jurnal Media Informatika Budidarma, 5(3), pp. 963–970. doi: 10.30865/mib.v5i3.3061.

Puspitaningayu, P. ., Widodo, A. . and Yundra, E. . (2018) ‘Wireless Body Area Networks dan Pengaruhnya dalam Perkembangan Teknologi m-Health’, INAJEEE : Indonesian Journal of Electrical and Eletronics Engineering, 1(1), p. 24. doi: 10.26740/inajeee.v1n1.p24-30.

Saptoto, R. (2018) ‘Pengaruh Adaptasi Waktu Administrasi yang disebabkan Penggunaan Lembar Jawaban Komputer terhadap Hasil CFIT 3 A dan 3 B’, Jurnal Psikologi, 45(1), pp. 52–65. doi: 10.22146/jpsi.30853.

Saptoto, R., Psikologi, F. and Mada, U. G. (2013) ‘Perbedaan Waktu Pemberian Jawaban dan Hasil Tes Inteligensi Ditinjau dari Perbedaan Lembar Jawaban’, Jurnal Psikologi, 39(2), pp. 220–230. doi: 10.22146/jpsi.6988.

Shrader, S. et al. (2016) ‘DESAIN DAN PENILAIAN INSTRUKSIONAL Menggunakan Teknologi Komunikasi untuk Meningkatkan Simulasi Pendidikan’, 80(1), pp. 1–7.

Simanungkalit, O., Magdalena, R. and Ramatryana, I. N. A. (2018) ‘Perancangan Dan Simulasi Pemisahan Refrain Lagu Dengan Metode Fast Fourier Transform (Fft)’, TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika, 2(2), pp. 15–18. doi: 10.25124/tektrika.v2i2.1670.

Sipasulta, R. Y., Lumenta, A. S. M. and Sompie, S. R. U. A. (2014) ‘Simulasi Sistem Pengacak Sinyal Dengan Metode Fft (Fast Fourier Transform)’, E-Journal Teknik Elektro Dan Komputer, 3(2), pp. 1–9.

Stanovich, K. E. (1999) ‘The sociopsychometrics of learning disabilities’, Journal of Learning Disabilities, 32(4), pp. 350–361. doi: 10.1177/002221949903200408.

Utami, A. N. (2020) ‘Klasifikasi Gangguan Tidur REM Behaviour Disorder Berdasarkan Sinyal EEG menggunakan Machine Learning’, Jurnal Sistem Cerdas, 03(02), pp. 216–230.

Widadi, R., Widodo, B. A. and Zulherman, D. (2020) ‘Klasifikasi Sinyal EEG pada Sistem BCI Pergerakan Jari Manusia Menggunakan Convolutional Neural Network’, Techno.Com, 19(4), pp. 459–467. doi: 10.33633/tc.v19i4.4119.




DOI: http://dx.doi.org/10.30872/jim.v16i2.6474

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer

Editor Informatika Mulawarman Address:
ISSN 1858-4853 (Print) | ISSN 2597-4963 (Online)

Published by: Mulawarman University
Managed by : Informatika Department
Jalan Sambaliung No.9 Sempaja Selatan Samarinda Utara,
Kalimantan Timur 75117
 - Indonesia
E-mail: jim.unmul@gmail.com
OJS: http://e-journals.unmul.ac.id/index.php/JIM
Contact Person: Gubtha Mahendra Putra

 Creative Commons License

Informatika Mulawarman by http://e-journals.unmul.ac.id/index.php/JIM/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Under the CC BY-SA license, authors and other users are able to reprint, distribute or use the material for commercial purposes so long as they give attribution to the journal Informatika Mulawarman and license the republished material under the same license.