Implementasi Algoritma Partitioning Around Medoids (PAM) untuk Mengelompokkan Hasil Produksi Komoditi Perkebunan (Studi Kasus: Dinas Perkebunan Provinsi Kalimantan Timur)

Dary Daris Abdurrahman, Fahrul Agus, Gubtha Mahendra Putra

Abstract


Sebagai salah satu Provinsi terluas di Indonesia, tepatnya terluas ke-4, Kalimantan Timur memiliki luas 129.000 Km2 . Berdasarkan data statistik dari Dinas Perkebunan tahun 2019, luas lahan perkebunan di Provinsi Kalimantan Timur seluas 1,39 juta hektar atau 10,7% dari luas keseluruhan. Dari luas keseluruhan tersebut, Provinsi Kalimantan Timur mampu memproduksi 18,4 juta ton komoditi perkebunan. Akan tetapi, produksi komoditi-komoditi tersebut dari tahun ke tahun mengalami perubahan jumlah produksi yang menunjukkan pola yang tidak tetap. Untuk itu, dalam rangka mengoptimalkan jumlah produksi, Dinas Perkebunan perlu untuk mengelompokkan daerah-daerah berdasarkan jumlah produksinya. Clustering adalah metode data mining yang membagi data menjadi kelompok-kelompok yang mempunyai objek yang karakteristiknya sama. Penelitian ini menggunakan metode clustering Partitioning Around Medoids (PAM) dengan 3 distance measure yakni Euclidean Distance, Manhattan Distance, dan Chebyshev Distance. Untuk mengukur kualitas hasil cluster digunakan metode Silhouette Coefficient (SC). Semakin besar nilai SC, semakin baik kualitas cluster. Dari 3 kali uji coba dengan menggunakan 3 cluster, 5 cluster, dan 7 cluster diperoleh nilai rata-rata SC terbesar pada uji coba 5 cluster dengan nilai SC 0.954701931 pada distance measure Manhattan Distance.

Keywords


Clustering; Partitioning Around Medoids; Euclidean Distance; Manhattan Distance; Chebyshev Distance;Silhouette Coefficient

Full Text:

PDF

References


disbun.kaltimprov.go.id, “Potensi Daerah Provinsi Kalimantan Timur,” disbun.kaltimprov.go.id, 2019. [Online]. Available: https://disbun.kaltimprov.go.id/halaman/potensi-daerah-provinsi-kalimantan-timur. [Accessed: 20-Nov-2020].

N. Narwati, “Pengelompokan Mahasiswa Menggunakan Algoritma K-Means,” J. Din. Inform., vol. 2, no. 2, 2010.

S. Wulandari and N. Dwitiyanti, “Implementasi Algoritma Clustering Partitioning Around Medoid (PAM) Dalam Clustering Virus MERS-CoV,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 5, no. 1, pp. 70–77, 2020.

B. Riyanto, “Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 562–568, 2019.

F. Hardiyanti, H. S. Tambunan, and I. S. Saragih, “Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Diare Di Indonesia,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 598–603, 2019.

D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018.

H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, “Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 16, no. 1, p. 13, 2021.

N. L. Anggreini, “Teknik Clustering Dengan Algoritma K-Medoids Untuk Menangani Strategi Promosi Di Politeknik Tedc Bandung,” J. Teknol. Inf. dan Pendidik., vol. 12, no. 2, pp. 1–7, 2019.

G. Abdillah et al., “Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di Pdam Tirta Raharja Menggunakan Algoritma K-Means,” Sentika 2016, vol. 2016, no. Sentika, pp. 18–19, 2016.

S. Agarwal, Data mining: Data mining concepts and techniques. 2014.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019.

R. Handoyo, R. Rumani, and S. M. Nasution, “Perbandingan Metode Clustering Menggunakan Metode Single Linkage Dan K-Means Pada Pengelompokan Dokumen,” JSM STMIK Mikroskil, vol. 15, no. 2, pp. 73–82, 2014




DOI: http://dx.doi.org/10.30872/jim.v16i2.6520

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer

Editor Informatika Mulawarman Address:
ISSN 1858-4853 (Print) | ISSN 2597-4963 (Online)

Published by: Mulawarman University
Managed by : Informatika Department
Jalan Sambaliung No.9 Sempaja Selatan Samarinda Utara,
Kalimantan Timur 75117
 - Indonesia
E-mail: jim.unmul@gmail.com
OJS: http://e-journals.unmul.ac.id/index.php/JIM
Contact Person: Gubtha Mahendra Putra

 Creative Commons License

Informatika Mulawarman by http://e-journals.unmul.ac.id/index.php/JIM/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Under the CC BY-SA license, authors and other users are able to reprint, distribute or use the material for commercial purposes so long as they give attribution to the journal Informatika Mulawarman and license the republished material under the same license.