Analisis Komponen Kimia Kayu Lontar (Borassus flabellifer Linn.) Asal Pulau Timor Sebagai Potensi Konstruksi Bangunan
Abstract
Kayu lontar (Borassus flabellifer L.) merupakan salah satu jenis palma yang potensial dimanfaatkan sebagai bahan konstruksi, kerajinan, maupun bioenergi, namun informasi mengenai karakteristik kimiawinya masih terbatas. Penelitian ini bertujuan untuk menganalisis komponen kimia kayu lontar asal Pulau Timor secara kuantitatif. Sampel berupa serbuk kayu ukuran 40–60 mesh dari tiga bagian batang (pangkal, tengah, ujung) kemudian dicampurkan agar mewakili variasi sifat kayu sepanjang batang, kemudian dicampurkan untuk mendapatkan hasil yang lebih merata dan representatif. Pengujian yang dianalisis meliputi kadar air, holoselulosa, alfa selulosa, lignin, zat ekstraktif (air dingin, air panas, etanol-toluena, NaOH 1%), serta pH. Hasil penelitian menunjukkan kandungan kadar air 9,35%, lignin 23,91%, holoselulosa 79%, alfa selulosa 43,57%, serta pH 3,53. Kandungan ekstraktif relatif tinggi, yaitu etanol-toluena 17,62%, larut air panas 8,33%, larut air dingin 6,57%, dan larut NaOH 25,19%. Komposisi ini menunjukkan bahwa kayu lontar memiliki kadar polisakarida struktural yang tinggi serta ekstraktif non-polar dan polar yang berperan dalam meningkatkan ketahanan alami terhadap jamur dan rayap, namun pH asam dapat memengaruhi kestabilan dimensi serta interaksi dengan bahan perekat dan logam. Secara keseluruhan, kayu lontar berpotensi digunakan sebagai bahan bangunan, kerajinan, dan sumber bioenergi, dengan perlakuan pengawetan tambahan untuk meningkatkan durabilitasnya baik di interior maupun eksterior.
Keywords
Full Text:
PDFReferences
Augustina, S., Wayudi, I., Darmawan, I. W., Malik, J., Kojima, Y., Okada, T., & Okano, N. (2021). Effect of Chemical Characteristics on Mechanical and Natural Durability Properties of Three Lesser-Used Wood Species. Jurnal Sylva Lestari 9(1): 161-178.
ASTM. (2007). ASTM D1107-96(2007): Standard test method for ethanol-toluene solubility of wood. ASTM International.
ASTM. (2007). ASTM D1110-84(2007): Standard test methods for water
solubility of wood. ASTM International.
ASTM. (2007). ASTM D1109-84(2007): Standard test method for 1% sodium hydroxide solubility of wood. ASTM International.
Badan Standardisasi Nasional (BSN). (2008). Lignin – Metode uji kadar lignin (SNI 0492:2008). Badan Standardisasi Nasional.
Bowyer, J.L., Shmulsky, R., and Haygreen, J.G. 2003. Hasil Hutan dan Ilmu Kayu Suatu Pengantar, Terjemahan [Third Edition]. Gadjah Mada University Press, Yogyakarta (ID).
British Standard (BSI). (1957). Methods of Testing Small Clear Specimens of Timber. BS 373:1957. London (UK): British Standard Institute.
Darmawan, W., Rahayu, I., Nandika, D., and Marchal, R. 2012. The Importance of Extractives and Abrasives in Wood Materials on The Wearing of Cutting Tools. Bioresources 7(4): 4715-4729. DOI: 10.15376/BIORES.7.4.4715-4729.
Davinsy R, Satria ED, Maulana MI, Nawawi DS, Sari RK, Maulana S, Hidayat W, Febrianto. 2019. Sifat Fisis dan Mekanis Oriented Strand Board Hibrida Bambu Pada Berbagai Shelling Ratio. J. Ilmu Teknol. Kayu Tropis 17(2). 152-159.
Davinsy, R & Pobas, M. 2024. Perbedaan warna dan sifat fisis kayu lontar berdasarkan letak kayu teras ke gubal asal Kota Kupang. Prosiding Seminar Nasional Hasil-Hasil Penelitian, 7(1): 1–9.
Davinsy, R., Pobas, M., & Adrin. 2024. Ciri makroskopis dan sifat fisis kayu lontar (Borassus flabellifer Linn.) asal Pulau Timor berdasarkan posisi batang. Ulin – Jurnal Hutan Tropis 8(2): 357-363.
Dwianto, W., Hadi, Y. S., Santoso, A., & Hermawan, D. (2020). Anatomical characteristics and physical properties of several Indonesian monocot wood species. IOP Conference Series: Earth and Environmental Science, 515(1), 012061. https://doi.org/10.1088/1755-1315/515/1/012061.
Fajriani, Y., Yusuf, S., & Fitriani, A. (2019). Identifikasi Anatomi Kayu Palem Asal Aceh dan Potensinya Sebagai Bahan Bangunan. Jurnal Penelitian Kehutanan Wallacea, 8(2), 143–151. https://doi.org/10.18330/jwallacea.2019.vol8iss2pp143-151.
Fathi, L., & Frühwald, A. (2014). The role of vascular bundles on the mechanical properties of coconut palm wood (Cocos nucifera). Holzforschung, 68(5), 519–525.
Fengel, D., & Wegener, G. (1989). Wood: Chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter.
Johns, W. E., and Niazi, K. A. 1980. Effect of pH and Buffering Capacity of Wood on The Relation Time of Urea Formaldehyde Resin. Wood and Fiber Science 12(4): 255–263
Jasni. (1998). Chemical composition and utilization of oil palm trunk. Journal of Oil Palm Research, 10(2), 1–10.
Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010). Chemical composition and pulping of date palm rachis and posidonia oceanica – a comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775–780. https://doi.org/10.1016/j.biortech.2009.08.079.
Killmann, W., & Hong, L. T. (2000). Oil palm stem utilization: Review of research. Kuala Lumpur: Forest Research Institute Malaysia (FRIM).
Lhate, I. 2011. Chemical Composition and Machinability of Selected Wood Species From Mozambique. [Thesis]. Swedish University of Agricultural Sciences, Uppsala (SE).
Li, T., et al. (2021). Wood nanotechnology for strong, tough, and functional materials. Nature Reviews Materials, 6(6), 642–666. https://doi.org/10.1038/s41578-020-00287.
Matsunaga, H., Kiguchi, M., Evans, P. D., & Ruelle, J. (2016). Role of extractives in durability of tropical wood species. Journal of Wood Science, 62(4), 331–339. https://doi.org/10.1007/s10086-016-1560-8.
Muthmainnah., Asniati., Erniwati., Ariyanti., & Abdul Hapid. (2024). Variations Of The Anatomic Structure And Fiber Quality Of Dengen Wood (Dillenia serrata) In A Tree. Jurnal Hutan Lestari, 12(1): 1-11.
Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2014). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148–153. https://doi.org/10.1016/j.biortech.2011.11.122.
Ralph, J., Lapierre, C., & Boerjan, W. (2019). Lignin structure and its engineering. Current Opinion in Biotechnology, 56, 240–249. https://doi.org/10.1016/j.copbio.2019.02.019.
Rowell, R. M. (2012). Handbook of wood chemistry and wood composites (2nd ed.). CRC Press.
Santos, R. B., Capanema, E. A., Balakshin, M. Y., Chang, H. M., & Jameel, H. (2012). Lignin structural variation in hardwoods and softwoods. Journal of Agricultural and Food Chemistry, 60(16), 4923–4930. https://doi.org/10.1021/jf300350c.
Shindu G., Kulloli, S. D., & Sannapapamma, K. J. (2024). Extraction and characterization of palmyra palm (Borassus flabellifer) fruit fiber. International Journal of Advanced Biochemistry Research, 8(8): 196- 198.
Stamm, A.J. 1964. Measurement of pH. Para. 10.1. Selective Adsorption from Solutions. Chapter10. Wood and Cellulose Science. The Ronald Press Company, NY (US).
Vek, V., Oven, P., & Poljanšek, I. (2014). Effect of extractives on properties of wood. Drvna Industrija, 65(4), 293–301. https://doi.org/10.5552/drind.2014.1348.
Wang, W., Cao, J., Cui, F., & Wang, X. (2020). Effect of pH on Chemical Components and Mechanical Properties of Thermally Modified Wood. Wood and Fiber Science, 52(2), 182–193.
Yu, X., et al. (2022). Low-corrosivity structural timber for a sustainable future. Matter, 5(7), 2022–2035.
Zhao, X., Zhang, L., & Liu, D. (2018). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 12(1), 4–20. https://doi.org/10.1002/bbb.1331.
DOI: http://dx.doi.org/10.32522/ujht.v9i2.22304
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rynaldo Davinsy, Lora Septrianda Putri, Adrin Adrin, Ika Kristinawanti, Ni Kade Ayu Dewi Aryani, Luisa Moi Manek, Mahardika Putra Purba, Emi Renoat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ulin : Jurnal Hutan Tropis |
Forestry Faculty of Mulawarman University Jl. Penajam Kampus Gunung Kelua Samarinda 75123 E-Mail: ulin.jhuttrop@fahutan.unmul.ac.id |
Support Contact Lisa Andani |
|